• 一位女工程师做电源研发的劳动札记牛!大伙儿

    电源

      最近接触到一个软件,印象笔记,感觉很好,一鼓作气把自己零散记录的工作笔记作了整理,还是没有恒心,工作笔记也是做得断断续续的,其间遇到的很多问题都已经不大记得怎么解决的。

      介绍一下自己,985学校硕士毕业的工科女生,在学校学的弱电,却在一个涉及电力电子的单位工作,工作两年半,一直是围绕一个项目打转,在公司的第一年就是做些线路板方面的测试等,相当于一个熟悉的过程吧,第二年开始接手一个10kW Boost的项目,说接手是因为这个项目交给我的时候其实是有一个实体的,就是说拓扑、器件、甚至控制方法都是已有的,但是就是除了原理图外没有任何技术文档,而我那个时候对开关电源是没有丝毫概念的,公司也没有人能够具体的指导我,领导们都是从意识层面进行指导的。这个项目从没有任何概念到摸索搞明白然后完成型式测试大概用了半年接近一年的样子,当然因为型式测试有些项目时间是很长的,今年下半年一直在处理产品从研发阶段到生产阶段中遇到的各种奇葩问题,也是因为今年没有什么新项目。说到这个其实也很心酸的,电力电子产品基本都是体积超大、重量超重的那种,而我们是小公司,即使是电力电子研发工程师也是要求搬运、拆卸啥的都得能干,我体重才不到一百斤,即使想做也是不可能做的,而我的直接领导也很头疼这件事儿,究竟安排什么样的项目给我才合适,这个10kW boost在我们公司算是小功率产品,体积重量也都还好,而正好今年推的大产品要用到这个boost,才作为一个项目给我做,所以说作为一个工科女生,在一个电力电子方向的小公司做硬件研发工程师,我其实非常担忧自己的前途,由于管理上的混乱以及培训制度的不健全,我做开关电源的成长之路也异常缓慢,当然这也跟个人性格有莫大的关联,我做事异常认真谨慎但并不特别刻苦,因为觉得不好好享受生活的话总有一天回首会发现时间都去哪儿了呢。

      再简单介绍一下这个10kW Boost,就是教科书上最简单的那种升压拓扑,不过是用的三组并联器件来增大功率,不是板级电源。

      组装原版boost,准备测其电气性能,理解一下其究竟是怎样工作的。(此时,我也看了开关电源的入门介绍,但是所有开关电源的介绍都是对稳态工作情况的介绍,还是很难形象地理解boost究竟是怎样工作的,比如我其实首先关心的是它是怎样启动的,而不是它的稳态波形是怎样的)

      查看同事以前测的波形,始终参不透电感电流的奥秘,观其平均值确是三组电感的总电流。不过观其最大值与最小值之差(纹波电流)对应的电感L值又与实际的L值无法对应,所以无从得知到底测的是哪个电流,故需亲自测过。

      以前也曾把boost的电源板和控制板拆下来过,现在装回去时发现不知如何装了,h总批评我怎么没拍张照片,这确实是个不该犯的错,错在自负,自觉只拆下两块板子,没什么复杂的,一定能装上去。造成现在组装的麻烦,万事都需慎重。测试boost需供电系统、负载。

      目前问题:1. 采用蓄电池,需在蓄电池与boost间接一开关控制,否则在蓄电池带电状态直接连接有一定的不安全性。连接完成-系统上电工作,这样的顺序才是安全合理的,但是却找不到能承受如此大电流的开关,选用不合标准的开关只能做轻载实验。

      2. 超级电容充放电控制箱是以前用于boost测试的,本来用它为boost供电是最合适的,但是现在由于时隔多月,该控制箱已经被拆得面目全非,复原应该没什么问题,只是其内的触摸屏和PLC是需要程序的,而编制人员已不在本公司,公司又没有做好相关的存档,搞得很麻烦。所以,不管是成功投入市场还是中途终止,失败的项目都应该做好存档。以防以后重新要用到的时候无法寻找。

      最近有些懈怠,做事遇到点问题就打不起精神,因为找不到方向,或者意义吧,有些茫然。突然想通了,总不能因为现存的一些问题搭上自己的人生吧,人生是自己的,而现状无法改变,我想我只能改变自己的方法去做自己要做的,而不是纠结于为什么这样为什么那样。看了一篇文章,模拟电路设计的九个级别,发现自己才处于三段,虽然我不做模拟电路设计,但级别应该类似,没有成功的设计经验,对仿真器也是只会用而不熟练,前路漫漫。

    一位女工程师做电源研发的劳动札记牛!大伙儿

      触摸屏的程序要过来了,下载成功,西门子PLC S7-200程序还在里面无需重新下载,实验箱也安装好,找了个电容管理板跟新做的一批略有不同,即PT100测温输入功能基本无效,这个是测环境温度的,做boost实验时应该也不是很必要。

      实验完成后,应做个文件归档和软硬件说明文件、操作方法。

      明天准备充电、实验,测boost的波形,希望一切顺利!

      做了空载和120Ω负载波形,不过看波形有点怪,空载运行时三个电感电流有负值,理论上应该是零,不知是探头操作问题,还是系统的动态特性如此,而120Ω负载时,电流有包络谱振荡,boost噪音很大。母线电压、IGBT的CE电压也有大尖峰值,why? 明天换几个测点测试看看。

      用录波仪代替示波器测试:空载、100Ω、45Ω负载,噪音很大,尖峰值也很大(带负载时),空载时,无尖峰电压,不过电流仍然不知为何是负值,换了一个罗氏线圈测电流,现象依旧,理论boost的电感是不可能流过负的电流值的,why?

      关于测出的电感电流为负值的原因:不能用罗氏线圈测这种长时间的DC电流,罗氏线圈会饱和,由于罗氏线圈采用Current Transform技术,只能测短时电流,尤其在测试脉冲电流时比较有优势,比如用于IGBT的双脉冲测试指定使用罗氏线圈,正是因为罗氏线圈高频响应做得比较好,而直流电流应选择基于霍尔原理的电流探头进行测试。

      测了几组波形,包括30Ω负载,输出电压都不够理想,出现在开关器件开通关断瞬间的高频尖峰值都很大,偏离直流值约200V左右。

      测了几次,控制板开始报故障,把控制板拆下来测试没有问题,发现是为控制板供电的电源板出问题了,电源板是基于反激拓扑的开关电源,输出的+15V、-9V呈现规律性波动,如同打嗝一样,拆下来测了两天,测了每个关键点的波形,应该就是论坛上所讨论过的打嗝保护,可是就是一头雾水,不知原因何在,应该说电路是成熟的,做了那么多实验了,所以应该是有元器件损坏才造成这样的打嗝保护,继续找!

      PS:后来测试过程中把MOS开关管和电流采样电阻都弄坏了,都换掉了并且换了UC2842芯片,板子正常工作了,但是至今也不知是什么原因造成的。发现开关电源的调试中经常出现一类问题,即知道故障源在哪边,换掉就OK了,但是却无法定位故障原因。

      在h总的建议下,用+16V电源直接加到UC2842的Vcc处,UC2842起来了,输出却基本是高电平,偶尔会有一个下降脉冲,确定不了是什么问题,把+48V电压也加上去了,一阵火光,电流采样电阻烧掉了,其实应该想到电阻会烧,UC2842的脉冲输出管脚保持高电平即MOSFET处于常开状态,此时加上的48V电压便是加在0.22Ω的采样电阻两端,这么小的电阻自然会烧掉的。

      电流很大,导致Mosfet也损坏了,栅极和漏极短路,UC2842也完全不正常,今天一天就在维修这块满目疮痍的电源板,拆掉原先的直插UC2842,由于公司只有贴片的UC2842,只好用导线将之焊接相连,拆换Mosfet,Mosfet还是ls帮忙拆下来的,我畏首畏尾拆了半天,又担心把板子烫坏了,一直也没拆下来,也许正是因为如此,才效率如此低。

      现在对开关电源真的是一头雾水,原来那么多不明白。

      电子元器件供应商承诺上周到到的DIP-8 UC2842芯片今天还未到,打电话咨询,得知芯片还未发出。下午,为了确保他会按时发货,我再次打电话咨询,得知货还未发出,虽然他说晚上下班前发货是一样的,但我明显已不信任他的话,有点火,他也给出了几个解释。是的,每一件事情的存在,都可以有非常合理的理由。但是,我气愤的是他没有按他所承诺的去做,我介意的不是时间长短,而是他应如实地告诉我,而不是事后貌似如实的解释,我表达了这个意思,可能有点咄咄逼人了,同事说像领导训话,反思了一下,我的表达可能是过于尖锐,怎样做才能表达清楚自己的意思而又不让人觉得尖锐难接受呢?

      我明白你的考虑,我也不是非要在短时间内XX,只是希望开始的时候能够明确地知道到达的时间,你懂我的意思吗? 是不是应该这么说呢?也许应该表达得谦卑一点,真的不是要刻意为难。

      转正答辩时有几个问题回答地不到位,虽然只是走个过场。

      问题1:“那你认为改版是成功的还是失败的?”,我非常直接地回答了,是失败的,这也许真的是大忌,应该这样回答:“它是可以应用的,但相对来说,性能不够理想,也会增大临界情况时的风险。”

      问题2:“变换器工作频率的选择,为什么是10kHz,能不能大或者小?”,回答的时候,我只知道频率太高的话,系统损耗过大,而且IGBT有上限频率的限制,无法做到太高的频率,却没想过频率太小会怎样,其实切到前面电感参数选择原则看到纹波系数才想到讲频率越小,纹波系数越大。刚才看书《精通开关电源设计》P12的一句话可以解释频率的问题,下面不做全部段落的摘抄,只写了结论:频率太高为什么不好?损耗几乎与开关频率成比例增加,频率太高会导致严重的电磁干扰现象。人们为什么又追求高频率?使变换器工作在超过人耳听觉范围的频率,电抗器不至于发出影响人的噪音,能够最大程度减少电源中器件的体积,增强电源的环路响应。

      继续,想测的波形大概都测完了,勉强可作我计算和仿真的参考,接下来的一周围绕相关项目要用的几种电路板进行的,做了每种板子的接口图交给电气部以便于他们绘制电气图、做清单,另外将电路板的测试文件、三防漆喷涂规范等相关文件定稿交给生产部,同时指导他们进行前期测试。boost控制板、电源板、电容并联板、超级电容管理板、二极管板共五块板子,想起来,还真的花了不少时间整理相关的文件。如果,花的时间真的有所值得也就罢了,事实是浪费了很多时间。首先是boost控制板,一共9块,测试测了也至少有三次,第一次纯粹是练手,是为了完成测试报告的编制,还是刚来公司那会h总安排的这个工作。后来今年说要推这个项目,我又拿出来测了一遍,发现有部分板子上的UC2842无法启动,感觉应该是启动电路上的稳压管有问题,不过也不确定,隔了几天又恢复正常了,也就没有继续查下去,然后又想要老化,所以老化完又要重新测试,其间对控制板各个细节都测过了(PS:后来其实又测过好几次,事实证明,测得还不够细致和深入,以及没有做好详细的测试记录工作),感觉记忆不太够用了,板子上的参数总是算了好几遍,要用时又忘记。然后是与生产部的交接文件,整理了好几次,当然也是因为我对板子的前因后果掌握得原本就不清楚,说到这个交接工作,及其痛苦,每次与XX交涉都感觉要被逼死似的,好像测试电路板不是他们的工作,而是我有求于他们似的。很早之前就专门整理好文件要交给他们,他们因为公司没有将该项目提到日程上就不了了之,之后,开始提这件事,又开始说时间不够之类的话。看来公司真的是一切都主导研发。目前,生产越来越强势。

      好吧,回到boost,上周汇报工作被w总教育加批评了两个小时,我开始认真分析boost的主电路传递函数,突然明白自己之前做的一切都像囫囵吞枣,结果搞得堵住了,咽不下去也吐不出来。以前只关注电流闭环的等效传函,也根本不明白为什么要加反馈补偿,通过用Mathcad画出boost主电路传递函数的波特图,那些公式终于不再只是公式了,对我而言,书上的推论和公式都是对理想boost建立的。我把电感直流电阻和电容的ESR都加进去,推出了比较接近真实的传递函数,说起来算了两天的时间呢。算得脑子里全是那个分数式子,把波特图导进去后,才发现这些杂散参数的意义,其实改善了传递函数的性能,而不是泛泛而谈的有害。当然太大肯定是无益的,电感直流电阻太大会分掉电感上的电压,这样在保持Vo不变的前提下只有增大占空比,而我们目前的应用下占空比其实已经很高了。电容的ESR太大,输出电压的纹波会相应增大,因为在开关关断时,电容会通过一个大电流,Vo的纹波就与ESR直接相关,同时电容的损耗和寿命都与此相关。

      总结来说,电感的直流电阻和电容的ESR改变了Gvd Gvg等传递函数的零极点特性,改变了品质因数Q值,这个值对传递函数非常重要。

      空载测试,分别用两个隔离差分探头测输入电压ES和输出电压DC,霍尔电流探头测一路电感电流:100:1 200:1 10mV/A ,测得的输入电压ES不太正常,在Boost启动时,存在大幅度振荡,换了10:1的Yokogawa原装普通探头测ES,其他不变,测得的ES波形在启动时虽有振荡,不过幅度不大,在安全范围内。看来选择探头也是一件很重要的事情,已经有两次是因为选择了不恰当的探头而造成问题。可是探头的选择到底应该考虑哪些因素呢,难道只能吃一堑长一智?

      今天测了120Ω负载,40Ω负载的波形,其间发生点意外,把一个100Ω/2000W的电阻烧断了,有明显火花,原因是放置电阻的时候将两个电阻挨在一起放置了,导致其线圈接触而短路,原来这样的大功率波纹电阻外部是没有绝缘保护的,其线圈都是直接裸露的,外面只是刷了一层薄薄的漆,不清楚是否是绝缘漆,从而易于散热。不过测40Ω的电阻时,用的两个2000W/20Ω的电阻,实际在电路中的功率为(500/40)^2*20=3000W,也许因为这样,波形后半段有点振荡。

      重载时,由超级电容提供的48V电压会受到电流的明显影响,30Ω负载时,输入电压基本就在43V上下波动。

      PS:现在才明白电流呈现的包络谱其实就是boost的低频振荡,后来根据现有系统推导出来的开环传递函数其实真的并不满足稳定性要求,后来通过减小输出电压反馈补偿环路的直流增益来改善了,其实就是牺牲了调节精度来获得稳定性。不过那时候搞不清楚,还称其为包络谱,幼稚。还觉得好奇怪,为什么满载的时候没有这个现象呢?幼稚!

      从文件夹中的0005.wdf可以看出700924的优越性,LDP-2002测到的高频尖峰电压呈阶梯状,明显是采样率不够,另外用LDP-2002与700924测同一点波形,LDP-2002测得的尖峰比700924测得的延迟350ns(PS:后来发现是我使用的那台录波仪DL850的CH1、CH2输入模块是100MHz带宽模块,其他输入模块均只为1MHz模块,而我测试时700924探头一般是接入CH1,而LDP-2002接入CH3或者CH4,所以此处测得波形的差异实际上并不足以说明探头的优劣)

      以前测得的波形均为10ms/div,测的时间很短,所以以为Boost的输出电压和电感电流是持续存在低频振荡的,这段时间录波仪的时间轴设为100ms/div测试了30Ω负载,发现这种低频振荡实际上是衰减的,48V输入电压 & 30Ω负载条件下 振荡大概约150ms后,电感波形和输出电压就基本没有明显的低频振荡了。

      IGBT关断时的尖峰电压是由于主电路的杂散电感造成的,会由升压二极管传递到输出端,比输出电压直流值高150~200V左右(负载最重时即30Ω负载),随负载减轻而变小。

      IGBT开通,二极管关断时的输出电压呈现一个衰减振荡,最初是个向下的高频尖峰,紧接着是一个向上的尖峰,值很大,+/-200V左右,但是这个振荡只出现在输出电压而并未出现在IGBT的集电极,实际上,这个下降的尖峰与IGBT开通时下降的集电极电压保持相等,所以现在怀疑是二极管的关断时间和反向恢复电流、电压造成的这一现象。

      写到这里,基本就告一段落了,这边就是一个开关电源白痴面对一个10kW boost 48v-480v直流升压器,通过一系列白痴级别的测试去了解boost的运作模式的,基本算是明白了书上讲的那些东西。

      入门比较痛苦,但是由于时间不紧张,我也可以慢慢做,后面一段时间就是比较艰苦的工作了,怎样在现有的基础上把性能调好,然后是一个全面的型式测试,经常晚上一个人在空荡荡的厂房调试,只有保安偶尔过来跟我聊聊天,但是我做实验的时候不大敢聊天,怕自己操作错,事实上我真的有一次因为跟人聊天把正负极接反了直接导致线路板烧掉了,此后我就再也不在做实验的时候与人讲话了。做型式测试过程中遇到很多奇葩问题,甚至我都不晓得应该怎么描述出来,最后的解决办法也都是治标不治本的办法。

    本站文章源于互联网采集,如有侵权请发邮件联系我们,我们在第一时间删除。 转载请注明:一位女工程师做电源研发的劳动札记牛!大伙儿 电源

    2019-10-09 08:24